
Fingerprints in the RDKit

Open-Source Cheminformatics

Gregory Landrum NIBR IT Novartis Institutes for BioMedical Research Basel RDKit UGM 2012, London

Molecular Fingerprints

 Idea : Apply a kernel to a molecule to generate a bit vector or count vector (less frequent)

- Typical kernels extract features of the molecule, hash them, and use the hash to determine bits that should be set
- Typical fingerprint sizes: 1K-4K bits.

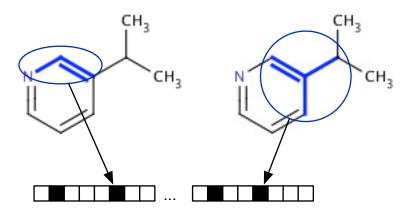
Calculating similarity between fingerprints

Most common approach is Tanimoto similarity:

$$Tani(V_i, V_j) = \frac{V_i \bullet V_j}{\sum_{b} V_{ib} + \sum_{b} V_{jb} - V_i \bullet V_j}$$

Shorthand for that:

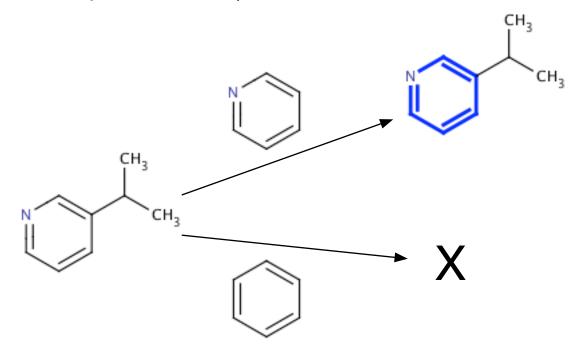
 $Tani(V_i, V_j) = |V_i \& V_j| / (|V_i| + |V_j| - |V_i \& V_j|)$


- A more general form, Tversky similarity: Tversky(V_i,V_j,a,b) = |V_i&V_j| / (a*|V_i| + b*|V_j| + (1-a-b)*|V_i&V_j|)
- Tani (V_i, V_j) = Tversky $(V_i, V_j, 1, 1)$
- Dice(V_i, V_j) = Tversky($V_i, V_j, 0.5, 0.5$)

These metrics and others are described and compared here: JW Raymond, P Willett *JCAMD* **16**:59-71 (2002)

Fingerprint similarity == molecule similarity?

Each fingerprint bit corresponds to a fragment of the molecule



- Assumption: molecules that are similar have a lot of fragments in common
- No "right" answer for defining similarity: there's no canonical definition of "molecular similarity"
- Lots of experience shows that the best fingerprint for activities like virtual screening (finding active similar molecules in a database) depends strongly on the data set.
- So: there are many different fingerprints available

Substructure Searching

 Find a subgraph isomorphism between two molecules (or: find whether or not an isomorphism exists)

 Problem is NP complete, but there are clever algorithms and heuristics to make it tractable (e.g. vf2)

Cordella, L.P., Foggia, P., Sansone, C. & Vento, M. A (sub)graph isomorphism algorithm for matching large graphs. *IEEE Transactions on Pattern Analysis and Machine Intelligence* **26**, 1367-1372 (2004). Ehrlich, H.-C. & Rarey, M. Systematic benchmark of substructure search in molecular graphs - From Ullmann to VF2. *J Cheminf* **4**, 13 (2012).

Substructure Searching at Scale using Fingerprints

- Problem: Practical SSS algorithms work for small numbers of searches, but are too slow for general database querying
- Solution: Use a fingerprinting algorithm to minimize the number of calls to the subgraph isomorphism library:
 Mol_j is a subgraph of Mol_i if and only if every bit set in FP_j is also set in FP_i (i.e. | FP_i&FP_i| == |FP_i|)
- Places severe constraints on the nature of the fingerprinting algorithm
- The more accurate this fingerprint-based screenout is, the faster the overall substructure search will be

"RDKit" fingerprints

yet another implementation of a Daylight-like fingerprint

- Substructure fingerprint
- Atom types: set by atomic number and aromaticity
- Bond types: set by atom types and bond types
- Algorithm:
 - For each subgraph (or path, if branchedPaths is false) of length minPathmaxPath bonds:
 - 1. generate hash for the path using bond types and each bond's neighbor count
 - 2. seed random-number generator with hash
 - 3. generate nBitsPerHash random numbers between 0 and fpSize and set the corresponding bits
 - 4. [optional]: "fold" fingerprint to target density of tgtDensity of bits set (minimum size minSize bits)

RDKit layered fingerprints *An alternate subgraph-hashing scheme*

- Substructure fingerprint if appropriate layers are used
- Atom and bond types: contributions determined by which layers are included
- Layers:
 - 0x01: pure topology
 - 0x02: bond order
 - 0x04: atom types (atomic number)
 - 0x08: presence of rings
 - 0x10: ring sizes
 - 0x20: aromaticity
- Algorithm: same as RDKit fingerprint

RDKit layered fingerprint 2 *An experimental substructure fingerprint*

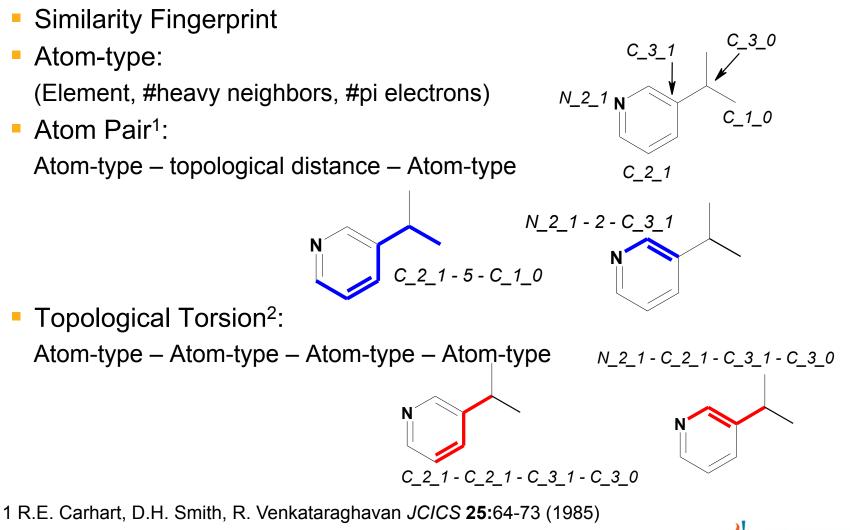
- Substructure fingerprint
- Use a set of pre-defined generic substructure patterns
- Algorithm:
 - 1. Find all mappings of each pattern onto the molecule
 - 2. Hash the subgraph defined by that mapping using atom numbers and set a bit
 - 3. Hash the subgraph defined by that mapping using bond types and set a bit

Avalon Fingerprints highly optimized in-house fingerprint

P. Gedeck, B. Rohde, C. Bartels *J. Chem. Inf. Model.* **46**:1924-36 (2006)

- Substructure or similarity fingerprint (depending on flags)
- Handles query features well (when built from a CTAB)
- Part of the avalon toolkit
 - <u>https://sourceforge.net/projects/avalontoolkit/</u>
 - Optionally useable from within the RDKit

Avalon Fingerprints terms

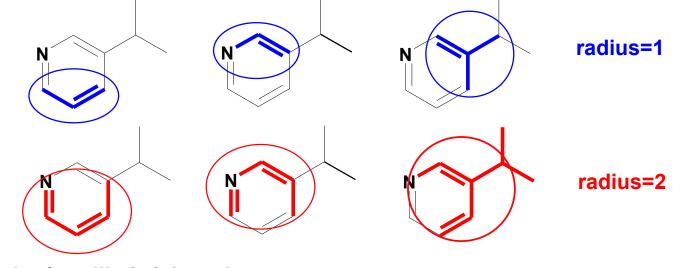

P. Gedeck, B. Rohde, C. Bartels J. Chem. Inf. Model. **46:**1924-36 (2006)

ATOM_COUNT	 Number of double, aromatic, and ring fusion bonds Number of ring CH2, fusion CH, and spiro carbon atoms Number of hetero atoms with attached hydrogen Existence and number of rare hetero atoms
ATOM_SYMBOL_PATH	 single atom paths if non-C,H,N,O two-atom chain paths starting with atoms beyond Ne or ring-fusion atoms and ending with hetero atom 3- or 4-atom paths starting at hetero atoms but ignoring atom type except for terminal atoms including paths ending in a ring closure (ring paths) 5- to 7-atom paths and ring paths starting at atom beyond Ne and ending in ring or hetero atom 2- to 6-atom chain paths starting at hetero atoms with three or more carbon substituent ignoring final atom type 2- to 4- atom chain paths starting at quarternary atom ignoring terminal atom type 2- to 4- atom chain and ring paths starting at spiro atom ignoring all but first atom type.
AUGMENTED_ATOM	 allyl or triple bond atoms pairs of attachments triples of attachments (setting additional bits for attachments with more than two hetero neighbours or two or more multiple bonds)
AUGMENTED_BOND	 attachment pairs sprouting of both ends of a bond. Note that both ends must have three or more non-hydrogen neighbours
HCOUNT_PAIR	 hydrogen attached to a non-CC-single bond double/triple bonds with at least one hydrogen
HCOUNT_PATH	 atom type with attached number of hydrogen atoms 2- to 5-atom chain paths starting at hydrogen bearing non-carbon atom ignoring non-terminal atom types 3- to 6-atom paths starting at methyl, terminating in a hetero atom and ignoring non-terminal atom types 1- to 5-atom chain paths starting at hetero atoms with more than one hydrogen ignoring non-terminal atom types
RING_PATH	 3- to 8-atom paths along ring bonds starting at a ring fusion atom and terminating in a ring closure

		—
BOND_PATH	 4-atom paths along ring bonds ignoring atom type 5-atom paths along ring bonds starting at atoms in non- 6-membered ring 4- to 6-atom paths of ring bonds that end in a ring closure 	
	 5-atom paths along ring bonds starting with double or triple bonds 	
HCOUNT_CLASS_PATH	 2- to 4-atom acyclic paths starting at carbon atoms with two or more hydrogen attachments and ending in a hetero atom, while mapping all hetero atoms to one class 2- to 5-atom acyclic paths starting at a hydrogen bearing hetero atom and ending in a hetero atom, while mapping all hetero atoms to one class 	_
ATOM_CLASS_PATH	 3- to 4-atom acyclic paths along ring bonds, while mapping all hetero atoms to one class 3- to 9-atom paths ending in a ring closure, while ignoring bond type, non-terminal atom type, and mapping all hetero atoms to one class non-CC bonds while mapping all hetero atoms to one class counts of QC and QQ bonds (Q being a heteroatom) ignoring bond type 	-
RING_PATTERN	 3-atom acyclic paths along ring bonds starting at non-carbon or atom in non-6-membered ring ignoring bond order and mapping hetero atoms to one class 6- to 17-atom paths along ring bonds terminating in a ring closure and starting from a fusion atom or an atom with more than 2 neighbours 	_
RING_SIZE_COUNTS	 counts bond membership for rings with sizes between 3 and 15+ (rings of size other that 5 or six receive more bits) presence of bonds connecting rings of different size 	_
DEGREE_PATHS	 2- to 3-atom acyclic paths labelling atoms with their degree if path starts at atom with one neighbour, a fusion atom, or and atom with more than three neighbours 2- to 5-atom paths labelling atoms with their degree if path starts at fusion atom bearing a hydrogen 2-atom paths labelling atoms with their degree if path starts at hetero atom beyond Ne with additional bits set for paths along ring bonds 	_
CLASS_SPIDERS	 tuples (c0, d1, d2, d3) of central atom class and graph distances to one CSP3 and two HETERO atoms or three HETERO atoms for distance up to 7 bonds. CSP3 atoms are carbon atoms with at least three single bonds to carbon 	
FEATURE_PAIRS	 distances of substituted ring atoms between 5 and 7 distances of quarternary atoms and hetero atoms between 1 and 8 distances between substituted ring atoms and querternary atoms between 1 and 6 distance triples between one non-6-membered ring atom, one other ring atom and a hetero atom 	ΓΙς

Atom-Pair and Topological-Torsion Fingerprints

related descriptors from the distant past



2 R. Nilakantan, N. Bauman, J. S. Dixon, R. Venkataraghavan; JCICS 27:82-5 (1987).

Morgan/Circular Fingerprints

new and popular

- Similarity fingerprint
- Atom types :
 - Connectivity: (Element, #heavy neighbors, #Hs, charge, isotope, inRing)
 - Chemical features: Donor, Acceptor, Aromatic, Halogen, Basic, Acidic
- Fingerprint takes into account the neighborhood of each atom:

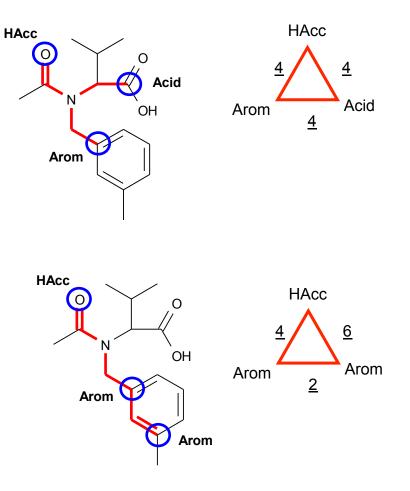
Typical radii: 0-3 bonds

Rogers, D. & Hahn, M. Extended-Connectivity Fingerprints. *J. Chem. Inf. Model.* **50**, 742-754 (2010).

Morgan/Circular Fingerprints

Chemical Feature definitions

 Adapted from A. Gobbi, D. Poppinger *Biotech and Bioeng* 61:47-54 (1998)


Donor	[\$([N;!H0;v3,v4&+1]),\ \$([O,S;H1;+0]),\ n&H1&+0]
Acceptor	
Aromatic	[a]
Halogen	[F,CI,Br,I]
Basic	
Acidic	[\$([C,S](=[O,S,P])-[O;H1,-1])]

https://sourceforge.net/p/rdkit/code/2174/tree/trunk/Code/GraphMol/Fingerprints/MorganFingerprints.cpp

2D Pharmacophore Fingerprints another "blast from the past"

- Identify feature points in a molecule
- Calculate inter-feature topological distances
- Assign bit id to feature distance combination

- Can be stored as counts or bits
- Feature definitions and distance bins are user-definable

One set of useful feature definitions:

A. Gobbi, D. Poppinger Biotech and Bioeng 61:47-54 (1998)

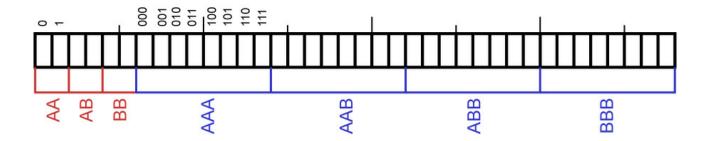
U NOVARTIS

2D Pharmacophore Fingerprints

Supplemental : features + distances -> bit ids

Example: Signature from: 2 Patterns 2 - 3 point pharmacophores 2 distance bins (1,3),(3,8)

Total Signature Size: 38 bits


2 point pharmacophores:

Combos: AA, AB, BB 2 bits/pharmacophore (1 distance with 2 bins)

Total: 6 bits

3 point pharmacophores: Combos: AAA, AAB, ABB, BBB 8 bits/pharmacophore (3 distances with 2 bins)

Total: 32 bits

2D Pharmacophores

Gobbi2d [A. Gobbi, D. Poppinger *Biotech and Bioeng* 61:47-54 (1998)]

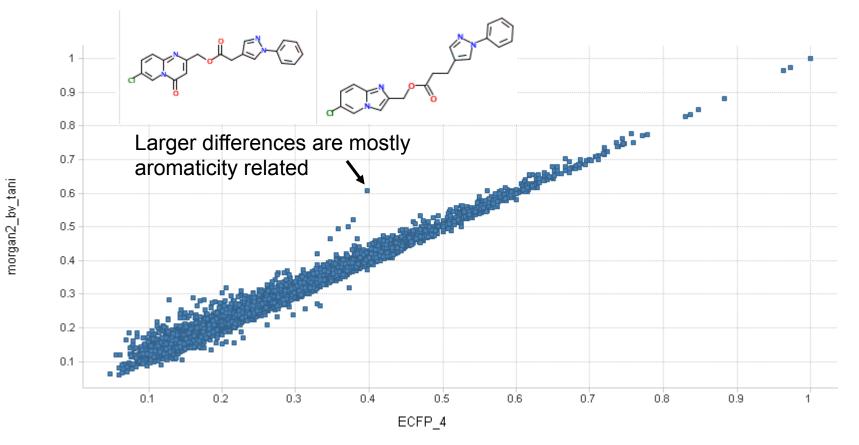
• Features (from paper):

- Hydrophobic: [\$([C;H2,H1](!=*)[C;H2,H1][C;H2,H1][\$([C;H1,H2,H3]);!\$(C=*)]),\$(C([C;H2,H3])([C;H2,H3])]
- Donor: [\$([N;!H0;v3]),\$([N;!H0;+1;v4]),\$([0,S;H1;+0]),\$([n;H1;+0])]
- Acceptor: [\$([0,S;H1;v2]-[!\$(*=[0,N,P,S])]),\$([0,S;H0;v2]),\$([0,S;-]),\$([N&v3;H1,H2]-[!\$ (*=[0,N,P,S])]),\$([N;v3;H0]),\$([n,o,s;+0]),F]
- AromaticAttachment: [\$([a;D3](@*)(@*)*)]
- AliphaticAttachment: [\$([A;D3](@*)(@*)*)]
- UnusualAtom: [!#1;!#6;!#7;!#8;!#9;!#16;!#17;!#35;!#53]
- BasicGroup: [\$([N;H2&+0][\$([C,a]);!\$([C,a](=0))]),\$([N;H1&+0]([\$([C,a]);!\$([C,a](=0))])[\$([C,a]);!\$([C,a](=0))]),\$([N;H0&+0]([C;!\$(C(=0))])([C;!\$(C(=0))])[C;!\$(C(=0))]),\$([N,n;X2;+0])]
- AcidicGroup: [\$([C,S](=[0,S,P])-[0;H1])]
- Distance bins (GL): [(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,100)]
- "fuzzing" from original paper not done

Pharm2d:

• Feature definitions from BaseFeatures.fdef :

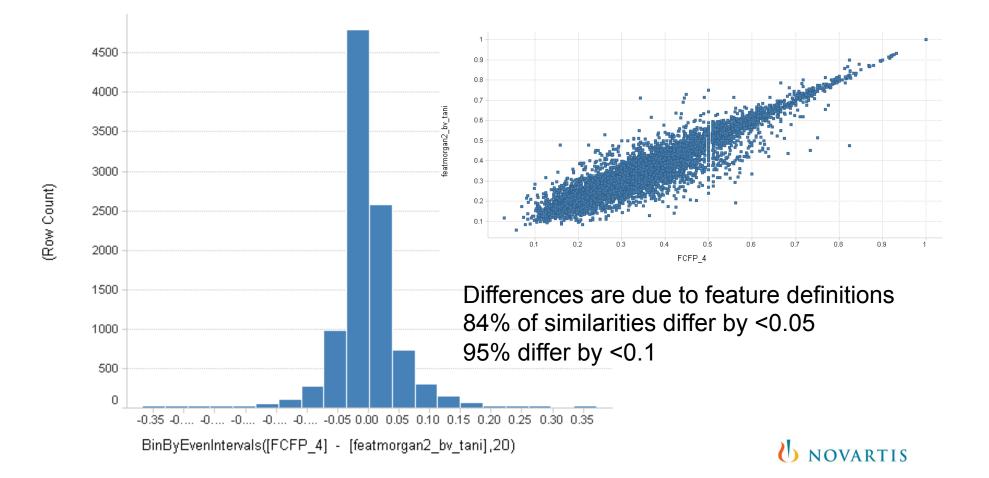
Donor, Acceptor, Neglonizable, Poslonizable, ZnBinder, Aromatic, Hydrophobe, LumpedHydrophobe


• Distance bins: [(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,100)] **UNOVARTIS**

- Pick 10K random pairs of vendor compounds that have at least some topological similarity to each other (Avalon similarity >= 0.5)
- Compare similarities calculated with Pipeline Pilot and the RDKit

Comparing fingerprints

RDKit Morgan2 vs PP ECFP4

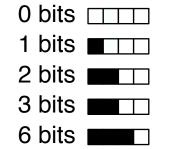


RDKit Morgan3 vs PP ECFP6 is similar

U NOVARTIS

Comparing fingerprints

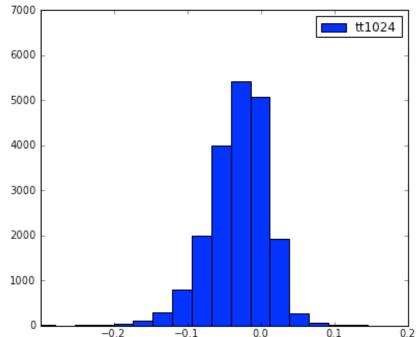
RDKit FeatMorgan2 vs PP FCFP4


Simulating count-based fingerprints

- Sometimes it makes sense to count the number of times a feature appears instead of simply that it appears -> count-based fingerprints
- "Dice" similarity for count-based fingerprints:

$$Sim(V_{i}, V_{j}) = \frac{2.0 * \sum_{b} \min(V_{ib}, V_{jb})}{\sum_{b} V_{ib} + \sum_{b} V_{jb}}$$

- Problem: count vectors take up more disk space/memory than bit vectors and similarity calculations using count vectors are slower.
- Partial solution: simulate counts by_8 including multiple bits per feature:


NOVARTIS

Simulating count-based fingerprints How well does it work?

- Dataset: 20K pairs of "drug like" commercial compounds selected to have a minimum topological similarity (based on Avalon fingerprint)
- Compare unhashed count-based topological-torsion fingerprint to a hashed bit vector version

#bits	99%	95%	90%	80%
4096	0.13	0.09	0.07	0.05
2048	0.13	0.09	0.07	0.05
1024	0.14	0.10	0.08	0.06
512	0.16	0.12	0.10	0.07

U NOVARTIS

SSS Screening performance of fingerprints

- Database: 20K diverse ZINC drug-like molecules
- "Fragments" queries: 500 diverse fragment-like molecules from ZINC
- "Leads" queries: 500 diverse lead-like molecules from ZINC
- "Pieces" queries: 823 pieces constructed by doing a BRICS fragmentation of a set of molecules from the pubchem screening set. Size range from 1->64 atoms
- Metric: what fraction of the fingerprint matches actually are substructure matches

fp	zinc_frags	zinc_leads	pubchem_pieces	
avalon	0.13	0.22	0.41	
layered	0.08	0.10	0.35	
layered2	0.78	0.26	0.64	

Expt date: 07.07.2012

U NOVARTIS